Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Kidney Int ; 103(5): 842-858, 2023 05.
Article in English | MEDLINE | ID: covidwho-2301729

ABSTRACT

Home dialysis modalities (home hemodialysis [HD] and peritoneal dialysis [PD]) are associated with greater patient autonomy and treatment satisfaction compared with in-center modalities, yet the level of home-dialysis use worldwide is low. Reasons for limited utilization are context-dependent, informed by local resources, dialysis costs, access to healthcare, health system policies, provider bias or preferences, cultural beliefs, individual lifestyle concerns, potential care-partner time, and financial burdens. In May 2021, KDIGO (Kidney Disease: Improving Global Outcomes) convened a controversies conference on home dialysis, focusing on how modality choice and distribution are determined and strategies to expand home-dialysis use. Participants recognized that expanding use of home dialysis within a given health system requires alignment of policy, fiscal resources, organizational structure, provider incentives, and accountability. Clinical outcomes across all dialysis modalities are largely similar, but for specific clinical measures, one modality may have advantages over another. Therefore, choice among available modalities is preference-sensitive, with consideration of quality of life, life goals, clinical characteristics, family or care-partner support, and living environment. Ideally, individuals, their care-partners, and their healthcare teams will employ shared decision-making in assessing initial and subsequent kidney failure treatment options. To meet this goal, iterative, high-quality education and support for healthcare professionals, patients, and care-partners are priorities. Everyone who faces dialysis should have access to home therapy. Facilitating universal access to home dialysis and expanding utilization requires alignment of policy considerations and resources at the dialysis-center level, with clear leadership from informed and motivated clinical teams.


Subject(s)
Kidney Failure, Chronic , Peritoneal Dialysis , Renal Insufficiency , Humans , Hemodialysis, Home , Quality of Life , Renal Dialysis , Kidney Failure, Chronic/therapy
2.
Sci Rep ; 12(1): 9959, 2022 06 15.
Article in English | MEDLINE | ID: covidwho-1890274

ABSTRACT

SARS-CoV-2 causes major disturbances in serum metabolite levels, associated with severity of the immune response. Despite the numerous advantages of urine for biomarker discovery, the potential association between urine metabolites and disease severity has not been investigated in coronavirus disease 2019 (COVID-19). In a proof-of-concept study, we performed quantitative urine metabolomics in patients hospitalized with COVID-19 and controls using LC-MS/MS. We assessed whether metabolites alterations were associated with COVID-19, disease severity, and inflammation. The study included 56 patients hospitalized with COVID-19 (26 non-critical and 30 critical disease); 16 healthy controls; and 3 controls with proximal tubule dysfunction unrelated to SARS-CoV-2. Metabolomic profiling revealed a major urinary increase of tryptophan metabolites kynurenine (P < 0.001), 3-hydroxykynurenine (P < 0.001) and 3-hydroxyanthranilate (P < 0.001) in SARS-CoV-2 infected patients. Urine levels of kynurenines were associated with disease severity and systemic inflammation (kynurenine, r 0.43, P = 0.001; 3-hydroxykynurenine, r 0.44, P < 0.001). Increased urinary levels of neutral amino acids and imino acid proline were also common in COVID-19, suggesting specific transport defects. Urine metabolomics identified major alterations in the tryptophan-kynurenine pathway, consistent with changes in host metabolism during SARS-CoV-2 infection. The association between increased urinary levels of kynurenines, inflammation and COVID-19 severity supports further evaluation of these easily available biomarkers.


Subject(s)
COVID-19 , Kynurenine , Biomarkers , Chromatography, Liquid , Humans , Inflammation , Kynurenine/metabolism , Metabolomics , SARS-CoV-2 , Tandem Mass Spectrometry , Tryptophan/metabolism
3.
J Med Virol ; 94(4): 1481-1487, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1718392

ABSTRACT

In-center maintenance hemodialysis (HD) patients are at high risk of acquiring coronavirus disease 2019 (COVID-19) by cross-contamination inside the unit. The aim of this study was to assess retrospectively the dynamics of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission during the very first pandemic phase (March-July 2020) in a cohort of in-center maintenance HD patients and in nurses the same HD facility, using a phylogenetic approach. All SARS-CoV-2 quantitative reverse-transcription polymerase chain reaction positive patients and nurses from our HD unit-respectively 10 out of 98, and 8 out of 58- and two other positive patients dialyzed in our self-care unit were included. Whole-genome viral sequencing and phylogenetic analysis supported the cluster investigation. Five positive patients were usually dialyzed in the same room and same shift before their COVID-19 diagnosis was made. Viral sequencing performed on 4/5 patients' swabs showed no phylogenetic link between their viruses. The fifth patient (whose virus could not be sequenced) was dialyzed at the end of the dialysis room and was treated by a different nurse than the one in charge of the other patients. Three nurses shared the same virus detected in both self-care patients (one of them had been transferred to our in-center facility). The epidemiologically strongly suspected intra-unit cluster could be ruled out by viral genome sequencing. The infection control policy did not allow inter-patient contamination within the HD facility, in contrast to evidence of moderate dissemination within the nursing staff and in the satellite unit. Epidemiologic data without phylogenetic confirmation might mislead the interpretation of the dynamics of viral spreading within congregate settings.


Subject(s)
COVID-19/prevention & control , COVID-19/transmission , Infection Control/methods , Renal Dialysis , Aged , Belgium , COVID-19/epidemiology , COVID-19 Testing , Female , Genome, Viral , Humans , Kidney Failure, Chronic/therapy , Male , Middle Aged , Phylogeny , Retrospective Studies , SARS-CoV-2/genetics
9.
Crit Care ; 25(1): 212, 2021 06 14.
Article in English | MEDLINE | ID: covidwho-1269885

ABSTRACT

BACKGROUND: The severity of coronavirus disease 2019 (COVID-19) is highly variable between individuals, ranging from asymptomatic infection to critical disease with acute respiratory distress syndrome requiring mechanical ventilation. Such variability stresses the need for novel biomarkers associated with disease outcome. As SARS-CoV-2 infection causes a kidney proximal tubule dysfunction with urinary loss of uric acid, we hypothesized that low serum levels of uric acid (hypouricemia) may be associated with severity and outcome of COVID-19. METHODS: In a retrospective study using two independent cohorts, we investigated and validated the prevalence, kinetics and clinical correlates of hypouricemia among patients hospitalized with COVID-19 to a large academic hospital in Brussels, Belgium. Survival analyses using Cox regression and a competing risk approach assessed the time to mechanical ventilation and/or death. Confocal microscopy assessed the expression of urate transporter URAT1 in kidney proximal tubule cells from patients who died from COVID-19. RESULTS: The discovery and validation cohorts included 192 and 325 patients hospitalized with COVID-19, respectively. Out of the 517 patients, 274 (53%) had severe and 92 (18%) critical COVID-19. In both cohorts, the prevalence of hypouricemia increased from 6% upon admission to 20% within the first days of hospitalization for COVID-19, contrasting with a very rare occurrence (< 1%) before hospitalization for COVID-19. During a median (interquartile range) follow-up of 148 days (50-168), 61 (12%) patients required mechanical ventilation and 93 (18%) died. In both cohorts considered separately and in pooled analyses, low serum levels of uric acid were strongly associated with disease severity (linear trend, P < 0.001) and with progression to death and respiratory failure requiring mechanical ventilation in Cox (adjusted hazard ratio 5.3, 95% confidence interval 3.6-7.8, P < 0.001) or competing risks (adjusted hazard ratio 20.8, 95% confidence interval 10.4-41.4, P < 0.001) models. At the structural level, kidneys from patients with COVID-19 showed a major reduction in urate transporter URAT1 expression in the brush border of proximal tubules. CONCLUSIONS: Among patients with COVID-19 requiring hospitalization, low serum levels of uric acid are common and associate with disease severity and with progression to respiratory failure requiring invasive mechanical ventilation.


Subject(s)
COVID-19/metabolism , COVID-19/physiopathology , Kidney Tubules, Proximal/metabolism , Severity of Illness Index , Uric Acid/blood , Aged , Belgium , COVID-19/complications , Cohort Studies , Critical Illness/epidemiology , Humans , Male , Middle Aged , Organic Anion Transporters/metabolism , Organic Cation Transport Proteins/metabolism , Outcome Assessment, Health Care , Retrospective Studies
11.
Perit Dial Int ; 40(5): 499-503, 2020 09.
Article in English | MEDLINE | ID: covidwho-737735

ABSTRACT

The pandemic of respiratory disease (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is life-threatening in peritoneal dialysis (PD) patients. In PD patients with systemic viral infections, peritoneal effluent may be theoretically contaminated. We searched for the presence of SARS-CoV-2 genetic material by real-time reverse transcriptase-polymerase chain reaction assays in serial PD effluents of three PD infected patients. Nasopharyngeal swabs obtained at admission showed high viral load in all three patients, whereas none of the PD effluent specimen tested positive, even after dialysate concentration. Those results support at most a very low SARS-CoV-2 dissemination risk by the peritoneal effluent of PD patients. Imposing special disposal procedures, such as the instillation of hypochlorite in the drainage bags to prevent viral spread to health-care workers, are probably not required.


Subject(s)
Ascitic Fluid/virology , Coronavirus Infections/epidemiology , Kidney Failure, Chronic/therapy , Peritoneal Dialysis/methods , Pneumonia, Viral/epidemiology , Severe Acute Respiratory Syndrome/epidemiology , Adult , COVID-19 , COVID-19 Testing , COVID-19 Vaccines , Clinical Laboratory Techniques , Coronavirus Infections/diagnosis , Female , Humans , Kidney Failure, Chronic/diagnosis , Kidney Failure, Chronic/epidemiology , Male , Middle Aged , Pandemics , Pneumonia, Viral/diagnosis , Real-Time Polymerase Chain Reaction/methods , Sampling Studies , Sensitivity and Specificity , Severe Acute Respiratory Syndrome/diagnosis , Viral Load
12.
Kidney Int ; 98(5): 1296-1307, 2020 11.
Article in English | MEDLINE | ID: covidwho-704001

ABSTRACT

Coronavirus disease 2019 (COVID-19) is commonly associated with kidney damage, and the angiotensin converting enzyme 2 (ACE2) receptor for SARS-CoV-2 is highly expressed in the proximal tubule cells. Whether patients with COVID-19 present specific manifestations of proximal tubule dysfunction remains unknown. To test this, we examined a cohort of 49 patients requiring hospitalization in a large academic hospital in Brussels, Belgium. There was evidence of proximal tubule dysfunction in a subset of patients with COVID-19, as attested by low-molecular-weight proteinuria (70-80%), neutral aminoaciduria (46%), and defective handling of uric acid (46%) or phosphate (19%). None of the patients had normoglycemic glucosuria. Proximal tubule dysfunction was independent of pre-existing comorbidities, glomerular proteinuria, nephrotoxic medications or viral load. At the structural level, kidneys from patients with COVID-19 showed prominent tubular injury, including in the initial part of the proximal tubule, with brush border loss, acute tubular necrosis, intraluminal debris, and a marked decrease in the expression of megalin in the brush border. Transmission electron microscopy identified particles resembling coronaviruses in vacuoles or cisternae of the endoplasmic reticulum in proximal tubule cells. Among features of proximal tubule dysfunction, hypouricemia with inappropriate uricosuria was independently associated with disease severity and with a significant increase in the risk of respiratory failure requiring invasive mechanical ventilation using Cox (adjusted hazard ratio 6.2, 95% CI 1.9-20.1) or competing risks (adjusted sub-distribution hazard ratio 12.1, 95% CI 2.7-55.4) survival models. Thus, our data establish that SARS-CoV-2 causes specific manifestations of proximal tubule dysfunction and provide novel insights into COVID-19 severity and outcome.


Subject(s)
Coronavirus Infections/physiopathology , Kidney Tubules, Proximal/physiopathology , Pneumonia, Viral/physiopathology , Aged , Aged, 80 and over , Belgium/epidemiology , Betacoronavirus , COVID-19 , Case-Control Studies , Coronavirus Infections/mortality , Coronavirus Infections/pathology , Coronavirus Infections/therapy , Humans , Kidney Tubules, Proximal/ultrastructure , Male , Middle Aged , Pandemics , Pneumonia, Viral/mortality , Pneumonia, Viral/pathology , Pneumonia, Viral/therapy , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL